Synthesis and Properties of the La1 − x − yEuyCaxVO4 (0 ≤ x, y ≤ 0.2) Compounds

نویسندگان

  • O. V. Chukova
  • S. G. Nedilko
  • A. A. Slepets
  • S. A. Nedilko
  • T. A. Voitenko
چکیده

The La1 - x Ca x VO4 and La1 - x - y Eu y Ca x VO4 (0 ≤ x, y ≤ 0.2) micro/nanosized powders were prepared by aqueous nitrate-citrate sol-gel synthesis. Phase composition of the sample depends on the x and y values. The La0.9Ca0.1VO4 is crystallized in monoclinic structure up to the x = 0.1. The La0.9Eu0.05Ca0.05VO4 sample was also attributed to the monoclinic structure. Increasing concentration of europium and calcium ions in La1 - x - yEu y Ca x VO4 solid solutions leads to the change of the crystal structure, and subsequently, stabilization of the tetragonal phase takes place.The obtained samples were characterized by XRD analysis, SEM microscopy, and IR spectroscopy. Luminescence properties of the synthesized powders were studied. Emission of the La1 - x Ca x VO4 samples is weak and consists of wide bands in the 450-800 nm spectral range. The observed bands at 570 and 630 were ascribed to electron transitions in the distorted VO43- vanadate groups. Emission of the La1 - x - y Eu y Ca x VO4 samples consists of narrow spectral lines in the 550-730 nm spectral range. The lines are caused by the 5D0 → 7FJ electron transitions in the Eu3+ ions. The Ca2+ ions incorporation increases the intensity of the Eu3+ ions luminescence. Structure of the spectra depends on Ca2+ concentration and excitation wave length. The carried out analysis has revealed that Eu3+ ions form at least two different types of emission centers in the La1 - x - y Eu y Ca x VO4 samples. The assumption is made that type I centers are formed by the Eu3+ ions in their regular positions in the crystal lattice, while the type II centers have complex structure and consist of Eu3+ ions, Ca2+ cations, and oxygen vacancies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Sr substitution on structural, redox and catalytic properties of nano-particles La1-xSrxMn0.5Co0.5O3 (x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5) as a catalyst for CO oxidation

Structural features of La(1-x)SrxMn0.5Co0.5O3 (x = 0.0, 0.1, 0.2, 0.3, 0.4, and 0.5) nano-particles were investigated using X-ray powder diffraction and FT-IR spectroscopy. The characterization of compounds by X-ray powder diffraction and using Fullprof program show a cubic structure (Pm3m space group) for x = 0.0 and a rhombohedra structure (R-3c space group) for the Sr substituted La(1-x)SrxM...

متن کامل

Effect of Grinding Time on Structural and Thermal Properties of Strontium-Doped Nanostructural Lanthanum

In this work, the strontium-doped lanthanum manganite- a ceramic material- used as cathode in solid oxide fuel cells. An impression of grinding time on the structural and thermal properties of Sr-doped LaMnO3 system with La1-xSrxMnO3 (x=0.2) stoichiometric ratio was investigated. The nano crystallite LSM powder with cubic structure was prepared by varying the milling time of planetary monomill ...

متن کامل

Synthesis of La1-xSrxAlO3 Perovskites by Reverse Strike Co-Precipitation Method and Its Soot Oxidation Activity

La1-xSrxAlO3 (x=0 to 0.4) perovskite materials were synthesized by the reverse strike co-precipitation method and their soot oxidation activity was evaluated. All the catalysts synthesized were characterized using XRD, BET specific surface area, FESEM and XPS techniques. As analyzed by XRD, La1-xSrxAlO3 <...

متن کامل

Structure Peculiarities of Micro- and Nanocrystalline Perovskite Ferrites La1−xSmxFeO3

Micro- and nanocrystalline lanthanum-samarium ferrites La1-x Sm x FeO3 with orthorhombic perovskite structure were obtained by using both solid state reactions (x = 0.2, 0.4, 0.6 and 0.8) and sol-gel synthesis (x = 0.5) techniques. Obtained structural parameters of both series of La1-x Sm x FeO3 are in excellent agreement with the "pure" LaFeO3 and SmFeO3 compounds, thus proving formation of co...

متن کامل

مطالعه اثر تهی جا در جایگاه لانتانیوم روی خصوصیات ساختاری، الکتریکی و مغناطیسی ترکیب منگنایت La1-xMnO3+δ، ساخته شده تحت شرایط متفاوت

 In this investigation, the effect of Lanthanum vacancy on the structural, electrical and magnetic properties of La1-xMnO3+δ manganite (x=0, 0.05) was studied. Decreasing La3+ amount in samples led to creation of some Mn4+ cations. By increasing the Mn4+content in atomic structure of samples, double exchange interaction was strengthened. Results of Ac magnetic susceptibility measurements indica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017